What?
Architecture Definition

Ruth Malan
Bredemeyer Consulting
Tel: (812) 335-1653
Fax: (812) 335-1652
Email: ruth_malan@bredemeyer.com
Web: http://www.bredemeyer.com

Architecture Impetus

...the dog houses have been built… You can’t build a sky rise the way you build a dog house…

Booch, SD’99
Architecture 501

• What is architecture?
 ▪ the set of decisions that an architect makes

• What decisions does the architect make?
 ▪ the architecturally significant ones

• What is architecturally significant?
 ▪ the architect decides

What: System Architecture
Eb Rechtin’s Definition

• System
 ▪ “A system is defined ... as a set of different elements so connected or related as to perform a unique function not performable by the elements alone.” p7

• Architecture
 ▪ “The term ‘architecture’ is widely understood and used for what it is--a top-down description of the structure of the system.”
What: **Software Architecture**

Formal Definition

- “architecture is the structure of the system, comprised of
 - components or building blocks
 - the externally visible properties of those components, and
 - the relationships among them”

Interface specifications

```
interface ContextManager {
  exception UnknownParticipant { long unknownParticipant ; }
  exception TransactionInProgress { string instigatorName ; }
  exception InvalidTransaction { string reason; }
  exception InvalidContextCoupon { }
  exception ChangesNotEnded { }
  exception AcceptNotPossible { }
  ...
  StartContextChanges (in long participantCoupon, out long contextCoupon) raises (UnknownParticipant, TransactionInProgress, InvalidTransaction)
  EndContextChanges (in long contextCoupon, out boolean noContinue , out string[] responses) raises (InvalidContextCoupon, NotInTransaction, InvalidTransaction)
  PublishChangesDecision (in long contextCoupon, in string decision) raises (NotInTransaction, InvalidContextCoupon, ChangesNotEnded , AcceptNotPossible)
  ...
}
```

Components and relationships

Is the Jar Full?
Is the Jar Full Now?

Architecture Essentials
Large Rocks First

- Key idea: *Put the “large rocks” in place first*
- What are the “large rocks”
 - large-grained chunks of the system
 - important properties of the system
Architecture: More than Decomposition—Do the pieces *fit*?

- Assign world’s best engineers to pick best
 - engine
 - transmission
 - suspension
 - etc

- Can they build the world’s best car?

adapted from Russ Ackoff

Architectural Perspective

- **System integrity can’t be achieved bottom-up**
 - if you optimize the parts, you *will* compromise the whole

- You need a system-wide perspective to
 - address cross-cutting concerns
 - design architectural mechanisms to address the system properties
 - make the tradeoffs necessary to ensure that the important system properties are met

- Architectural decisions optimize the whole
 - making compromises for some of the parts to achieve the overall good of the whole
Architectural Decisions
A matter of scope

Architecture is the set of decisions that cannot be delegated without compromising overall system objectives.

Software Architecture
Key Concerns

- System decomposition
 - how do we break the system up into pieces?
 - do we have all the necessary pieces?
 - do the pieces fit together?

+ Cross-cutting concerns
 - broad-scoped qualities or properties of the system
 - tradeoffs among the qualities

+ System integrity
Software Architecture
Key Concerns

• System decomposition
• Cross-cutting concerns
• System integrity

• Alignment with business
 ▪ with business strategy
 ▪ with business environment
 § legacy and existing investments
 § organizational capabilities and culture
 ▪ with customers and channel

• System evolution
 ▪ Architectures are long-lived!
 ▪ they must provide the blueprint for implementing today’s strategy, and
 ▪ they must to be able to evolve, because the business strategy will change (with increasing frequency)!

Architecture Representation

• Architecture models
 ▪ thinking tools
 • explore alternatives and ideas (more cheaply than prototyping or trial by building the system)
 • e.g., find interface operations by exploring component collaborations
 ▪ document the architecture
 ▪ descriptive or prescriptive
 ▪ communicate the architecture
 ▪ help visualize the system

• Architecture documentation
 ▪ architecture models
 + rationale, assumptions, explanations, implications
Architecture Views

• Different audiences have different information needs

What Do You Get From This? What Does Your Manager Get?

interface ContextManager {
 exception UnknownParticipant (long unknownParticipant;)
 exception TransactionInProgress (string instigatorName;)
 exception InvalidTransaction (string reason;)
 exception InvalidContextCoupon {}
 exception ChangesNoteEnded {}
 exception AcceptNotPossible {}
 ...
 StartContextChanges (in long participantCoupon, out long contextCoupon) raises
 (UnknownParticipant, TransactionInProgress, InvalidTransaction)
 EndContextChanges (in long contextCoupon, out boolean noContinue, out string[] responses) raises (InvalidContextCoupon, NotInTransaction, InvalidTransaction)
 PublishChangesDecision (in long contextCoupon, in string decision) raises
 (NotInTransaction, InvalidContextCoupon, ChangesNotEnded, AcceptNotPossible)
 ...
}
What Do You Get From This? What Does Your Manager Get?

- Acquire Dialog
- Monitor Dialog
- Export Dialog
- Post Processing
- Image Processing
- Data Collection
- Image Collection
- Dialog Mgr
- Dialog Comm
- Acquire Mgr

- Probe Control
- Exporting
- System Services
- GUI
- Acquisition Management
- Probe Service

Software Architecture Views

Conceptual Architecture
- Architecture Diagram, CRC-R cards
- Focus: identification of components and allocation of responsibilities to components

Logical Architecture
- Updated Architecture Diagram (showing interfaces), Interface specifications, Component specifications and usage guides
- Focus: design of component interactions, connection mechanisms and protocols; interface design and specification; providing contextual information for component users

Execution Architecture
- Process View (shown on Collaboration Diagrams)
- Focus: assignment of the runtime component instances to processes, threads and address spaces; how they communicate and coordinate; how physical resources are allocated to them

Overall System View
- Blueprint for developers
- Unambiguous
- Precise
- Actionable

Copyright 1999-2005 Bredemeyer Consulting
http://www.bredemeyer.com
Architecture Decision Framework

Meta-Architecture
- Architectural vision, principles, styles, key concepts and mechanisms
- Focus: high-level decisions that will strongly influence the structure of the system; rules certain structural choices out, and guides selection decisions and tradeoffs among others

Architecture
- Structures and relationships, static and dynamic views, assumptions and rationale
- Focus: decomposition and allocation of responsibility, interface design, assignment to processes and threads

Architecture Guidelines and Policies
- Use model and guidelines; policies, mechanisms and design patterns; frameworks, infrastructure and standards
- Focus: guide engineers in creating designs that maintain the integrity of the architecture

Architecture Decisions
Not Simply an Matter of Abstraction
- Some Software Architecture decisions will be very high level, and some may be quite detailed and “low level”
 - Some architectural objectives can be achieved by Meta-Architecture (e.g., an Architectural Principle) alone
 - Some architectural objectives must be solved by working together at the product family level on quite detailed aspects of the system, e.g.,
 - components and interfaces at the interface between interoperating applications (e.g., CCOW for context management)
 - standards to allow interoperability, information sharing, and convergence of the infrastructure to support these
Minimalist Architecture

• **Minimalist Architecture Principle**: Keep your architecture decision set as small as it possibly can be, while still meeting your architectural objectives

Review

• **We have covered**
 - *What* architecture is
 - Building blocks of the system, their externally visible properties and relationships to each other and the environment
 - **Our Architecture Decision Framework**
 - layered decision model, consisting of Meta-Architecture, Architecture and Architectural Guidelines and Policies
 - Architecture is represented through views
 - Conceptual, Logical, Execution Architecture
 - other views as appropriate to cross-cutting concerns, e.g., security view
Architecture Book

• **Software Architecture Action Guide**

 by Malan, Ruth and Dana Bredemeyer, see *draft chapters at http://www.bredemeyer.com/ArchitectingProcess/SWAAActionGuideTOC.htm*

 Part I: Software Architecture and the Visual Architecting Process
 1. Software Architecture: Central Concerns, Key Decisions
 2. The Visual Architecting Process: Good, Right and Successful
 3. Initiate and Gain Commitment: Getting Started
 4. Meta-Architecture: Getting Strategic
 5. Conceptual Architecture: Getting the Big Chunks Right
 6. Logical Architecture: Getting Precise, Making Actionable
 7. Execution Architecture: Getting Physical
 8. Architecture Guideline and Policies: Getting Specific
 9. Architecture Deployment: Getting Real

Resources

• Resources for Software Architects web site
 - http://www.bredemeyer.com

• Training from Bredemeyer Consulting
 - **Role of the Architect** Workshop, Bloomington, IN, May 26-28, 2005
 - **Software Architecture Workshop**, Indianapolis, IN, September 26-29, 2005