
Copyright 2002 Bredemeyer Consulting
1

Dana Bredemeyer
Bredemeyer Consulting
Tel: (812) 335-1653
Fax: (812) 335-1652
Email: dana@bredemeyer.com
Web: http://www.bredemeyer.com

Introduction to
Software Architecture

Why? What? How? Where? and Who?

Acknowledgments
This workshop was created by Dana Bredemeyer and Ruth Malan at Bredemeyer
Consulting. It has benefited from all our interactions with architects over the past
several years. We would especially like to thank Bill Baddley, Bill Branson, Derek
Coleman, Bill Crandall, Guy Cox, Dave Dikel, Martin Griss, Jon Gustafson, Mark
Interrante, Stan Letarte, Reed Letsinger, Holt Mebane, Mike Ogush, Rob Seliger, Mark
Simos, Joe Sventek, and Dean Thompson.

Copyright 2002 Bredemeyer Consulting
2

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 2

Key Message

• Architecture is the way we
§ connect business goals with what we build
§ gain alignment
§ coordinate work
§ engage the brilliance of a larger group of people

• Architecture is critically linked to competitive
advantage

• Architecture is not easy
§ it is hard work and it doesn’t just happen
§ everyone has a role to play in making it succeed
§ but architecture is best created by a small group of dedicated

architects who drive the process and make the decisions

Architecture is inherently strategic. It should enable the achievement of the business
strategy, and be the technical implementation of business strategy.

Copyright 2002 Bredemeyer Consulting
3

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 3

We’re Building a Mall!

Team 1
West end

Team 2
Link A

Team 3
Link B

Team 5

South Wing
Requirements
• traditional style
• central food court
• …

Team 4

Rotunda

“Here’s the basic architecture,
and requirements. Go build it!”

Imagine This
Simon Malls is building a new mall. A set of strategic guidelines have been made by
the senior executive team. Now it is up to the development organization to build the
mall. They want to get it done as quickly as possible, so they have several hundred
builders ready to work on the site. They divide up the builders into teams. They get a
good builder to outline the essential parts of the building. They assign these parts of
the building to the teams, and off they go.

What do they get???

But we don’t ship models…
In the software business, we ship code, not models, so we have a high discomfort with
models. But if we look at the building industry, they “ship” buildings, not drawings and
yet you would not begin to think of building complex physical structures without
drawings.

Copyright 2002 Bredemeyer Consulting
4

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 4

We’ve Built Your Mall!

Building Architecture Analogy
When we consider complex physical buildings, it is immediately apparent that we
could not do without architecture. The result is at best baroque. Along with the
clumsiness, inelegance and discord in the structures, we get

• duplication, redundancy, wasted effort, rework

• gaps

• poor integration, inconsistency, mismatch

A mall is built along the ground, typically. We simply could not imagine building a
skyscraper without an architecture! Now there is not just the need for integrity of the
design, consistency of assumptions, and integration among the parts. Even for the
inexpert, other considerations loom large:

The sequence of work has to be carefully planned. Also, structural qualities have to be
designed--including the building’s ability to bear load, it’s behavior under high-winds,
the ability to move people as well as bulky heavy equipment into the building. All these
normal conditions, and unusual conditions like fire, earthquake, and terrorist attacks,
have to be taken into account. If they are not explicitly taken into account in creating
the architecture, it is left purely to a matter of luck and who can afford this?

Copyright 2002 Bredemeyer Consulting
5

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 5

Architecture “Accommodations”

1

2

3

4

How we get to monolithic, spaghetti systems
Architectural drift begins with the first decision to short-cut the architecture, under the
guise of better satisfying requirements or simply out of ignorance. As more and more
decisions are made to make this or that accommodation, the coupling increases to the
point where it is hard to isolate components.

“Accommodations are like rebar in concrete--the coupling turns the
system into a unit”

“We typically get system devolution, not system evolution!”

Copyright 2002 Bredemeyer Consulting
6

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 6

The Software Problem

§ unpredictability
• in system behavior
• in initial development and

future release schedules

§ poor quality
• hard to find defects
• hard to fix problems

• fixes introduce new
problems

§ increasingly difficult to
change

• harder to respond to
market shifts

• costs more, takes longer

§ hard to reuse
• hard to isolate chunks to

reuse
• chunks are highly tuned to

specific product

§ morale problems

§ losing ground in the market
• competition can do more

with less

• not responsive

The typical software system is a kludge, resulting in

“Kludge”
Without architecture, we get a kludge--a word that is defined in Websters as:

1. A system, especially a computer system, that is constituted of poorly matched
elements or of elements originally intended for other applications.

2. A clumsy or inelegant solution to a problem.

Escher’s Gravitation

Copyright 2002 Bredemeyer Consulting
7

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 7

Making a Difference
Architecture is the key

• An architecture that is more than a simple
sketch of the system

• An architecture that is adhered to

Architecture: More than a Box and Line Sketch
Just as a building’s architecture is more than a sketch of the floor plan, a system’s
architecture is more than a box and line drawing. Just like a floor plan, the box and line
drawing serves a purpose, but cannot be the extent of the architecture if you want to
address cross-cutting concerns and provide a blueprint that developers can work from.

The Culture has to Change, for Architectures to “Stick”
If the architecture (no matter how good) is treated as an initial guideline for team
formation, and not much more, then we will be in the same mess we’re in when we
don’t invest in creating the architecture--or worse, because we will have only
heightened the sense of failure and cynicism associated with other attempted
architecture and reuse initiatives.

Copyright 2002 Bredemeyer Consulting
8

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 8

Software Architecture
Key Concerns

• System decomposition
§ how do we break the system up into pieces?

§ do we have all the necessary pieces?

§ do the pieces fit together?

• Cross-cutting concerns
§ broad-scoped qualities or properties of the system

§ tradeoffs among the qualities

• System integrity

System Decomposition
In order to deal with complexity, we need to “divide and conquer”. We do this to get
teams working in parallel, on the one hand, and to make the problem more
intellectually tractable on the other. But when we break the system down into pieces,
we need to have some confidence that the pieces can be assembled into a system.

Cross-Cutting Concerns
We refer to broad-scoped qualities or properties of the system as cross-cutting
concerns, because their impact is diffuse or systemic. It may be a matter of preferring
not to isolate these concerns because the decomposition is being driven by other
concerns, or it may be that no matter how you might “slice-and-dice” the system,
multiple parts are going to have to collaborate to address these cross-cutting
concerns. At any rate, to effectively address cross-cutting concerns, they must be
approached first at a more broad-scoped level. Many system qualities (also known as
non-functional requirements or service-level agreements) are of this nature. They
include performance, security and interoperability requirements. To make the picture
more complicated, the system qualities often conflict, so that trade-offs have to be
made among alternative solutions, taking into account the relative priorities of the
system qualities.

Copyright 2002 Bredemeyer Consulting
9

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 9

Architecture: decomposition
Do the pieces fit?

• Assign world’s best
engineers to pick best
§ engine
§ transmission

§ suspension
§ etc

• Can they build the
world’s best car?

But Decomposition is Not the Only Concern
To see why consider:

Russ Ackoff’s Car Analogy

Collect together a team of the best automotive design engineers in the world. Assign
them the task of selecting the best car component of each type. Will they be able to
create the world’s best car from these components? No! Even if they could all plug
together, they are designed to optimize with respect to different sets of top priority
system qualities.

Copyright 2002 Bredemeyer Consulting
10

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 10

Architecture is about
Important Properties First

• Key idea: System integrity can’t be achieve
bottom-up

• You need a system-wide perspective to
§ make the tradeoffs necessary to ensure that the important

system properties are met as you decompose the system
§ design the architectural mechanisms that address the

system properties

Important Properties First
The way you decompose the system can make a big difference to whether or not
important system properties can be met. For this reason, system properties (otherwise
known as qualities or non-functional requirements) must be addressed at the
architectural level. If they are not, in many cases it will be impossible, or very difficult,
to meet them.

Copyright 2002 Bredemeyer Consulting
11

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 11

Architectural Decisions
A matter of scope

Product A scope

Component scope

Product family scope

Product B scope

product family
architecture decisions

product architecture
decisions

Architectural Decisions
A distinctive characteristic of architectural decisions is that they need to be made from
a broad-scoped or system perspective. Any decision that could be made from a more
narrowly-scoped, local perspective, is not architectural (at the current level of system
scope). This allows us to distinguish between detailed design and implementation
decisions on the one hand, and architectural decisions on the other—the former have
local impact, and the latter have systemic impact. That is, architectural decisions
impact, if not all of the system, at least different parts of the system, and a broad-
scoped perspective is required to take this impact into account, and to make the
necessary trade-offs across the system.

For example, if the system under consideration is an individual application, any
decisions that could be made by component designers or implementers should be
deferred to them and not appear as part of the architecture. If the scope of the
architecture is a family of applications (or product line), then any decision that relates
only to a single application (or product) should be deferred at least to the application
architecture and not be part of the application family architecture.

However, a decision may have systemic impact but not be very important, in which
case it is also not architectural. By nature, architectural decisions should focus on high
impact, high priority areas that are in strong alignment with the business strategy

Copyright 2002 Bredemeyer Consulting
12

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 12

Scope of Architectural Decisions
Reuse Example

Product A scope

Component scope

Product family scope

Product B scope

decisions made
here are tuned to
product A

decisions made
here are tuned to
product B

decisions optimize over the whole,
making tradeoffs and compromises
across the products for the overall
good of the whole

Reuse Example
When we focus on one product, we do all we can to tune that product for it’s customer
requirements, as best we understand them. This, by nature, tends to make the
components of that product less likely to be a good fit for other products, even if we
have followed all the architectural principles of encapsulation and loose coupling.

Architecture is very much about making tradeoffs and compromises in order to
optimize globally across the system or systems within the scope of the architecture.
Individual system priorities have to be considered in the context of the priorities for the
overall system.

Copyright 2002 Bredemeyer Consulting
13

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 13

Architectural Decisions
Scope and Impact

High Impact
(high priority, important to

business)
Low Impact

Systemic
(broad scope)

Local

not architectural

not architectural

focus of
architectural

decisions

not generally
architectural

System Priority Setting

In the design of any complex system, one has to pick where to excel, and where to
make the myriad compromises necessary to get the system built. It is essential to
make priorities explicit so that attention can be focused on high-priority areas, and so
that trade-offs between conflicting concerns can be made rationally, and decisions can
be justified in terms of agreed priorities. Architects need to lead the priority-setting
process for technical aspects of the system. This is a highly strategic process, and has
to be informed by:

• the business, including business strategy and direction, core competencies and
resources, and politics

• the market including customers, competitors, suppliers and channel

• technology including trends and opportunities

• constraints including existing technology investments and legacy systems

• challenges and impediments to the success of the system, the development of the
system, and the business.

Copyright 2002 Bredemeyer Consulting
14

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 14

Software Architecture
Key Concerns

• Alignment with business
§ with business strategy
§ with business environment

• legacy and existing investments
• organizational capabilities and culture

§ with customers and channel

• System evolution
§ Architectures are long-lived!
§ they must provide the blueprint for

implementing today’s strategy, and
§ they must to be able to evolve, because

the business strategy will change (with
increasing frequency)!

• System
decomposition

• Cross-cutting
concerns

• System integrity

and

Bottom-Up Decisions --> Bottom-up Strategy
If developers are allowed to make any decision they wish (either because there is no
architecture or the architecture is not taken seriously), then we must accept that the
real strategy of the business will be emergent from their decisions.

Top-down Strategy:
Business Strategy --> Architecture Strategy --> Product Implementation

If we want strategy to drive the business, then the business strategy must be explicitly
stated and shared with the architects, and translated into a technical strategy that will
be the foundation for this generation of business strategy, and evolve to be the
foundation for the coming generations of business strategy. This technical strategy
shapes the architecture, and ultimately the products that use the architecture (now,
and for the next 5 to 10 years!).

The business strategy directs what organizational capabilities must be sustained and
built, and the technical strategy determines what the product capabilities are--and
determines what capabilities are even feasible. If there is a disconnect between the
business strategy and the technical strategy, the product capabilities will not
necessarily match what the business strategy intends.

However, in the typical organization, there a disconnect between business strategy
formulation and architecture strategy formulation. Business strategy is not informed by
architects, and the architecture strategy is not informed by the business strategy
process.

Copyright 2002 Bredemeyer Consulting
15

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 15

Why is this important?

• Allows us to be
§ more productive

§ more creative

§ more driven by our strategy

• so that we can
§ be flexible, responsive, quick

• adapt to changing business needs

• do more

§ be a dominant player in our industry/market

§ enable something that is not possible today
§ be in business in 5 years

Architecture is the key to:
• making complex systems tractable, so that we can design and build ever more
challenging systems without getting into a quality morass

• managing the development of complex systems; effectively managing large numbers
of people

• increasing reuse and reducing waste, rework and redundancy

• increasing consistency and integration among systems

and

• implementing business strategy

• creating sustainable strategic advantage

Copyright 2002 Bredemeyer Consulting
16

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 16

What is Architecture?
Formal Definition

• “architecture is the structure of the system,
comprised of
§ components or building blocks

§ the externally visible properties of those components, and

§ the relationships among them”
• adapted from Bass, Clements, and Kazman. Software Architecture in

Practice, Addison-Wesley 1997

in ter face Contex tManager {

except ion UnknownPar t i c ipant { long unknownPar t i c ipan t ; }
except ion Transact ion InProgress { s t r ing ins t iga to rName; }
except ion Inva l idTransact ion { s t r ing reason; }
except ion Inva l idContex tCoupon { }
except ion C h a n g e s N o t e E n d e d { }
except ion Accep tNotPoss ib le { }
...
S tar tContex tChanges (in long par t i c ipantCoupon, ou t long contex tCoupon) ra i ses
(UnknownPar t ic ipant , Transact ion InProgress, Inva l idTransact ion)

EndCon tex tChanges (i n l ong con tex tCoupon , ou t boo lean noCon t inue , out s t r ing[]
responses) ra ises (Inva l idContex tCoupon, Not InTransact ion , Inva l idTransact ion)

Pub l ishChangesDec is ion (in long contex tCoupon, in s t r ing dec is ion) ra ises
(Not InTransact ion , Inva l idContex tCoupon, C h a n g e s N o t E n d e d , Accep tNotPoss ib le)
… }

Components and relationships Interface specifications+ + ??

Software Architecture
Software architecture encompasses the set of significant decisions about the
organization of a software system

• selection of the structural elements and their interfaces by which a system is
composed

• behavior as specified in collaborations among those elements

• composition of these structural and behavioral elements into larger subsystems

Booch, Presentation at Software Developers Conference 1999

Architectural Model
An architectural model shows how significant properties of a system are distributed
across its constituent parts.

Coleman and Beringer, Tutorial Presentation at UML World 2000

Copyright 2002 Bredemeyer Consulting
17

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 17

Architecture Essentials
Components and Relationships
• Components
§ high-level building blocks of the system
§ provide

• modularity
• separation of concerns

• Components collaborate
§ to provide services (functionality)
§ at some service level (system qualities)

• Component Interfaces
§ provide for encapsulation, with restricted access points

• Component Specifications
§ define externally visible properties
§ provide usage guidelines

Copyright 2002 Bredemeyer Consulting
18

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 18

Externally Visible Properties
The Purpose of Interfaces
• Interfaces
§ define the component’s access points
§ enable component plug-and-play

• decouple clients and providers
• serve as a contract between component

providers and clients

§ define externally visible properties

• A well-defined interface
§ makes it easy to identify and understand the purpose and

behavior of a component, and how to use it
§ serves to increase developer productivity

• focus on assembling and linking proven components via their
interfaces

Interfaces--the “seams in the system”
An interface is a list of operations providing a coherent service. It

• names a collection of operations that can be invoked by clients

• specifies the operation signatures (at least)

• is not the implementation of any of the operations

• gives a name to a collection of operations that work together to carry out some
logically interesting behavior of a system (i.e., a service). (Kruchten, 1998)

• prescribes the mechanisms for a component to interact with other components.

A component that conforms to a given interface satisfies the contract specified by that
interface and may be substituted in any context within which the interface applies.
(Kruchten, 1998)

Well-structured interface
“A well-structured interface provides a clear separation between the outside view and
the inside view of [the component], making it possible to understand and approach [the
component] without having to dive into the details of its implementation.” (Booch, 1999,
p. 155)

Copyright 2002 Bredemeyer Consulting
19

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 19

Interface Signature
Syntax

interface ContextManager {

exception UnknownParticipant { long unknownParticipant; }
exception TransactionInProgress { string instigatorName; }
exception InvalidTransaction { string reason; }
exception InvalidContextCoupon { }
exception ChangesNoteEnded { }
exception AcceptNotPossible { }
...
StartContextChanges (in long participantCoupon, out long contextCoupon) raises
(UnknownParticipant, TransactionInProgress, InvalidTransaction)

EndContextChanges (in long contextCoupon, out boolean noContinue, out string[]
responses) raises (InvalidContextCoupon, NotInTransaction, InvalidTransaction)

PublishChangesDecision (in long contextCoupon, in string decision) raises
(NotInTransaction, InvalidContextCoupon, ChangesNotEnded, AcceptNotPossible)
… }

Copyright 2002 Bredemeyer Consulting
20

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 20

Interface Specification
Semantics

StartContextChanges
This method enables an application to indicate that it wants to start changing the common
context. The application denotes itself with its participant coupon as the value of the input
participantCoupon. A context change transaction is initiated. Actual changes to the context
data are conducted via the ContextData interface. The output contextCoupon is the value of
the context coupon that has been assigned by the context manager to denote the change
transaction.

• To serve as a contract between component
providers and clients, interfaces must be
§ fully documented
§ semantics, not just syntax

§ understandable, unambiguous, precise

Adding semantics: informal description, models, pre/post conditions

Copyright 2002 Bredemeyer Consulting
21

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 21

Registrar
:RegistrationManager

nested focus
of control

:Student :Course aCourse:Course

registerStudent(“Jim”,”UML”)

aStudent :=find(“Jim”)

aCourse :=find(“UML”)

c :=findCourse(“UML”)

s :=findStudent(“Jim”)

[s&c] register(aStudent)

[s&c] ok

[(!c)&(!s)] nothingFound

[(!s)&c] studentNotFound

[(!c)&s] courseNotFound

branch of control

branch

merge of control

guard condition

self delegation

Registrar
:RegistrationManager

nested focus
of control

:Student :Course aCourse:Course

registerStudent(“Jim”,”UML”)

aStudent :=find(“Jim”)

aCourse :=find(“UML”)

c :=findCourse(“UML”)

s :=findStudent(“Jim”)

[s&c] register(aStudent)

[s&c] ok

[(!c)&(!s)] nothingFound

[(!s)&c] studentNotFound

[(!c)&s] courseNotFound

branch of control

branch

merge of control

guard condition

self delegation

Architecture Models

• Architecture models
§ thinking tools

• explore alternatives and ideas (more cheaply than prototyping
or trial by building the system)

• e.g., find interface operations by exploring component
collaborations

§ document the architecture
• descriptive or prescriptive
• help visualize the system

Unified Modeling Language (UML)
UML is the Unified Modeling Language

• It is a standard approved by the OMG

• Development of UML was initiated by Grady Booch, Jim Rumbaugh and Ivar
Jacobson at Rational, but had broad industry involvement

• Roots in OO methods, but not limited to object-oriented development

UML is

• A modeling language with vocabulary and rules, and well-defined semantics

• Primarily visual, but does have the Object Constraint Language (OCL) and allows for
text annotations

• Extensible and customizable through stereotypes

Copyright 2002 Bredemeyer Consulting
22

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 22

Architecture Views

• Different audiences have different
information needs

customer builder

Architecture Stakeholders
Architecture stakeholders include stakeholders in the development organization, e.g.:

• management

• architects

• developers

• QA

• field support

• marketing

and stakeholders in the customer organization, e.g.:

• users

• purchasing decision makers

• system administrators

Copyright 2002 Bredemeyer Consulting
23

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 23

Software Architecture Views

Conceptual Architecture

Logical Architecture

Execution Architecture

• Architecture Diagram, CRC-R cards
• Focus: identification of components and allocation of responsibilities to

components

• Updated Architecture Diagram (showing interfaces), Interface specifications,
Component specifications and usage guides

• Focus: design of component interactions, connection mechanisms and
protocols; interface design and specification; providing contextual information
for component users

• Process View (shown on Collaboration Diagrams)
• Focus: assignment of the runtime component instances to processes,

threads and address spaces; how they communicate and coordinate; how
physical resources are allocated to them

Overall system
view

Blueprint for
developers
• unambigous
• precise

Architecture Decisions
Our layered model of software architecture reflects the different architectural decisions and
areas of concern or focus and architectural thinking. We will discuss the different models or
views that best support architecture decision making and documentation/
communication in each of the areas of concern.

Conceptual Architecture

The Conceptual Architecture identifies the high-level components of the system, and the
relationships among them. Its purpose is to direct attention at an appropriate decomposition of
the system without delving into details. Moreover, it provides a useful vehicle for communicating
the architecture to non-technical audiences, such as management, marketing, and users. It
consists of the Architecture Diagram (without interface detail) and an informal component
specification for each component.

Logical Architecture

In Logical Architecture, the externally visible properties of the components are made precise
and unambiguous through well-defined interfaces and component specifications, and key
architectural mechanisms are detailed. The Logical Architecture provides a detailed “blueprint”
from which component developers and component users can work in relative independence. It
incorporates the detailed Architecture Diagram (with interfaces), Component and Interface
Specifications, and Component Collaboration Diagrams, along with discussion and explanations
of mechanisms, rationale, etc.

Execution Architecture

An Execution Architecture is created for distributed or concurrent systems. The process view
shows the mapping of components onto the processes of the physical system, with attention
being focused on such concerns as throughput and scalability. The deployment view shows the
mapping of (physical) components in the executing system onto the nodes of the physical
system.

Copyright 2002 Bredemeyer Consulting
24

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 24

Addressing Cross-Cutting Concerns

• Recall: Architecture is about
§ system decomposition into components and

§ addressing key system-wide properties or cross-cutting concerns

• Cross-cutting concerns may be addressed by
§ Principles that guide structuring, architectural patterns
§ Structure: components and interfaces

§ Mechanisms: component roles and patterns of interaction
• responsibilities, assigned to component (roles)
• behavior expressed as interactions

• interaction paths, expressed in (role-related) interfaces

More than Components and Relationships (and Boxes and Lines)
Saying that architecture is just about components and relationships is like saying that
designing a house is just about the floor plan! Qualities, like structural soundness,
restrict and are restricted by some of the spatial layout choices, but also have a lot to
do with structural aspects that are not evident in a floor plan at all. For example, the
direction of the beams supporting the roof has something to do with width versus
length of the area under the roof, as well as the roof style. Other qualities, like light,
have something to do with the floor plan, but also have to do with placement and size
of windows and doors, height of ceilings, even wall color and mirrors.

Copyright 2002 Bredemeyer Consulting
25

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 25

Software Architecture Views

Conceptual Architecture

Logical Architecture

Execution Architecture

• Architecture Diagram, CRC-R cards
• Focus: identification of components and allocation of responsibilities to

components

• Updated Architecture Diagram (showing interfaces), Interface specifications,
Component specifications and usage guides

• Focus: design of component interactions, connection mechanisms and
protocols; interface design and specification; providing contextual information
for component users

• Process View (shown on Collaboration Diagrams)
• Focus: assignment of the runtime component instances to processes,

threads and address spaces; how they communicate and coordinate; how
physical resources are allocated to them

encapsulation and
separation of
concerns

System qualities
addressed by:

mechanisms and
component
interactions,
component roles

system
topology/resources
and concurrency

Architecture Decisions
Our layered model of software architecture reflects the different architectural decisions and
areas of concern or focus and architectural thinking. We will discuss the different models or
views that best support architecture decision making and documentation/
communication in each of the areas of concern.

Copyright 2002 Bredemeyer Consulting
26

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 26

Visual Architecting Process
Objectives

• Create an architecture that is
§ Good: technically sound, well documented

§ Right: meets its stakeholder needs (business, customers,
developers, managers, etc.)

§ SUCCESSFUL: actually used in building systems

Good Architecture Documentation
Relates to the understandability, approachability, and usefulness of the documentation
format and content to the various stakeholders. Expressing the architecture in terms
of views, and tailoring documents/presentations to different stakeholders, enhances
the usefulness of the documentation. Good documentation also includes rationale for
the architectural decisions.

Bad Architecture
A bad “architecture” can have the following characteristics: monolithic, so even small
changes are distributed through code and cause unpredictable results with long
compile/link/debug cycle times; hidden implicit coupling in code; multiple inconsistent
ways of doing the same thing; not documented and so has a high learning curve.

Copyright 2002 Bredemeyer Consulting
27

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 27

Visual Architecting Process
Good, Right and Successful!

Init/Commit

Deployment

Architecture
Validation

System
StructuringArchitectural

Requirements

Presented at Comdex 98
http://www.bredemeyer.com

“Good”

“Right”

“Successful”

“Successful”

“Right”

Architectural Requirements
A “good” architecture solves the problem that it solves well, but it does not necessarily
solve the right problem. In order to do so, the architects cannot just rely on past
experience and intuition--though these are important too. A “right” architecture is one
that will enable the development organization to implement the current business
strategy, and evolve to keep pace with changes in business strategy.

To create a right architecture, the architecting team translates business objectives into
architectural objectives. It understands the current organizational context, and looks at
trends to make assertions about the future. It considers scenarios (good and bad,
likely and unlikely). It takes stakeholder goals into account in establishing function and
non-functional requirements, and establishes the relative priority of these
requirements. A solid understanding of current behavioral requirements, and a well-
grounded projection of future behavioral requirements, drives the structuring choices
that are at the heart of architecting. Tradeoffs are driven by the prioritized set of
system qualities (or non-functional requirements), and mechanisms are designed to
accomplish key cross-cutting concerns (system properties that cannot be localized to
particular components).

Copyright 2002 Bredemeyer Consulting
28

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 28

Making Architecture Work
Advice to Managers

Culture
• values
• reward system
• roles and
responsibilities

Commitment
• customers
• management
• developers
• team

Capability
• technology
• process
• selling and
change mgt

• Does the culture
support or counter
the approach?

• Who should be
committed?
• In what functions?
• At what levels?

• Who is committed?

• What capabilities are
required?

• Do we have them? How do
we get them?

Ensure that the capability,
commitment and culture of
the organization is in
alignment with the
approach

3 C’s
We are interested in knowing if the organization, and in particular the architecture
team and lead architect, and any impacted projects, managers, etc., have the
capability, commitment and culture to make the architecture effort succeed. Strengths
will point to areas to build on. Weaknesses will point to areas to work on.

Rather than ignoring the forces that will likely bring the project to its knees, this
approach allows us to identify risks, so that we can come up with a risk management
plan.

Copyright 2002 Bredemeyer Consulting
29

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 29

Making Architecture Work
Advice To Architects

• The architecture must serve its stakeholders
§ it must address a strategic business objective of the key

sponsor(s)

§ it must contribute immediate value to utilizers (developers,
project managers, etc.) of the architecture

Reference

Role of the Architect Workshop from Bredemeyer Consulting.

Copyright 2002 Bredemeyer Consulting
30

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 30

Making Architecture Work
Advice To Developers

• It the architecture directly impacts you
§ follow the architecture

• active acceptance of leadership

• contribute, collaborate to achieve the goal

• If not, don’t get in the way
• Both following and getting out of

the way involve
§ goodwill, trust

§ putting your ego aside

§ leadership - your behavior affects others

Example of Following
One architecture team had three of the most senior, most talented architects at HP.
They knew that to be successful, all three could not try to lead. This would cause too
much division in the team. They appointed a leader, and as Joe Sventek puts it, they
let him be a "benevolent dictator with a baseball bat". That is, they allowed him to set
direction, make difficult decisions to break logjams, and generally lead the team. This
does not mean that they were not active in debates about how to solve the challenges
of the architecture, but rather that they allowed the lead architect to make choices
between alternatives when there was no consensus.

“People who say it cannot be done should not interrupt those who are doing it”
Anon, quoted in Cougar, 1996

Copyright 2002 Bredemeyer Consulting
31

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 31

Key Message

• A “good” and “right” architecture will not “just
happen”

• It requires action
§ leading the effort

§ following, supporting, contributing to the effort

§ getting out of the way

• Everyone has a role to play in the success

Copyright 2002 Bredemeyer Consulting
32

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 32

Resources

• Resources for Software Architects web site
§ http://www.bredemeyer.com

• Enterprise-wide IT Architecture web site
§ http://www.ewita.com

• Philips Gaudi project
§ http://www.extra.research.philips.com/natlab/sysarch/index.

html

Copyright 2002 Bredemeyer Consulting
33

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 33

Books

• Dikel, D., D. Kane and J. Wilson,
Software Architecture: Organizational
Principles and Patterns, Prentice-Hall,
2001.

• Maier and Rechtin, The Art of Systems
Architecting, 2nd Ed. 2001.

• Michael McGrath, Product Strategy for
High Technology Companies, 2001

• Rechtin, E. Systems Architecting:
Creating and Building Complex Systems.
Prentice-Hall, 1991.

Copyright 2002 Bredemeyer Consulting
34

Copyright © 2002 Bredemeyer Consulting
http://www.bredemeyer.com

Software Architecture Primer V2.0
ArchitectureIntroduction.ppt Slide 34

Papers

• Papers on http://www.bredemeyer.com/papers.htm
§ "Software Architecture: Central Concerns, Key Decisions" by Ruth

Malan and Dana Bredemeyer, May 2002.

§ "Minimalist Architecture" by Ruth Malan and Dana Bredemeyer,
May 2002.

§ "The Visual Architecting Process" by Ruth Malan and Dana
Bredemeyer, February 2002.

§ "Architecture Teams", by Ruth Malan and Dana Bredemeyer,
March 2001.

§ "Role of the Software Architect" by Dana Bredemeyer and Ruth
Malan, 2002 (minor revision of 1999 paper).

